First, we’ll load up some time series data.
attribute_file<-system.file('extdata/yahara_alb_attributes.csv', package = "ncdfgeom")
attributes <- read.csv(attribute_file, colClasses='character')
lats <- as.numeric(attributes$YCOORD)
lons <- as.numeric(attributes$XCOORD)
alts <- rep(1,length(lats)) # Making up altitude for the sake of demonstration.
We now have vectors of latitudes, longitudes, altitudes for each of our time series.
# can use geoknife from github
# timeseries_file <- system.file('extdata/yahara_alb_gdp_file.csv', package = "ncdfgeom")
# raw_data <- geoknife::parseTimeseries(timeseries_file, delim=',', with.units=TRUE)
raw_data <- readRDS(system.file('extdata/yahara_alb_gdp_file.rds', package = "ncdfgeom"))
timeseries_data <- raw_data[2:(ncol(raw_data) - 3)]
time <- raw_data$DateTime
long_name <- paste(raw_data$variable[1], 'area weighted', raw_data$statistic[1], 'in',
raw_data$units[1], sep=' ')
meta <- list(name=raw_data$variable[1], long_name=long_name)
Now we have the timeseries_data
data.frame of timeseries
data, the time
vector of timesteps, and a bit of metadata
for the timeseries variable that we will write into the NetCDF file.
nc_summary<-'example summary'
nc_date_create<-'2099-01-01'
nc_creator_name='example creator'
nc_creator_email='[email protected]'
nc_project='example ncdfgeom'
nc_proc_level='just an example no processing'
nc_title<-'example title'
global_attributes<-list(title = nc_title,
summary = nc_summary,
date_created = nc_date_create,
creator_name = nc_creator_name,
creator_email = nc_creator_email,
project = nc_project,
processing_level = nc_proc_level)
ncdfgeom::write_timeseries_dsg(nc_file = "demo_nc.nc",
instance_names = names(timeseries_data),
lats = lats,
lons = lons,
alts = alts,
times = time,
data = timeseries_data,
data_unit = raw_data$units[1],
data_prec = 'double',
data_metadata = meta,
attributes = global_attributes) -> nc_file
Now we have a NetCDF file with reference spatial information for each time series, and a single timeseries variable.
The file has three dimensions.
ncmeta::nc_dims(nc_file)
#> # A tibble: 3 × 4
#> id name length unlim
#> <int> <chr> <dbl> <lgl>
#> 1 0 instance 71 FALSE
#> 2 1 time 730 FALSE
#> 3 2 instance_name_char 2 FALSE
The file has variables for latitude, longitude, altitude, timeseries IDs, and a data variable.
ncmeta::nc_vars(nc_file)
#> # A tibble: 6 × 5
#> id name type ndims natts
#> <int> <chr> <chr> <int> <int>
#> 1 0 instance_name NC_CHAR 2 2
#> 2 1 time NC_DOUBLE 1 4
#> 3 2 lat NC_DOUBLE 1 4
#> 4 3 lon NC_DOUBLE 1 4
#> 5 4 alt NC_DOUBLE 1 4
#> 6 5 BCCA_0-125deg_pr_day_ACCESS1-0_rcp45_r1i1p1 NC_DOUBLE 2 4
The primary dimensions in the file are of length, number of time steps and number of time series.
ncmeta::nc_dims(nc_file)
#> # A tibble: 3 × 4
#> id name length unlim
#> <int> <chr> <dbl> <lgl>
#> 1 0 instance 71 FALSE
#> 2 1 time 730 FALSE
#> 3 2 instance_name_char 2 FALSE
The header of the resulting NetCDF file looks like:
This file can be read back into R with the function
read_timeseries_dsg
. The response is a list of variables as
shown below.
timeseries_dataset <- ncdfgeom::read_timeseries_dsg(nc_file)
names(timeseries_dataset)
#> [1] "time" "lats" "lons"
#> [4] "alts" "varmeta" "data_unit"
#> [7] "data_prec" "data_frames" "global_attributes"
time
, lats
, lons
, and
alts
are vectors that apply to the whole dataset.varmeta
has one entry per timeseries variable read from
the NetCDF file and contains the name
and
long_name
attribute of each variable.data_unit
and data_prec
contain units and
precision metadata for each variable.data_frames
is a list containing one
data.frame
for each variable read from the NetCDF
file.global_attributes
contains standard global attributes
found in the file. All of the variables that have one element per
timeseries variable, are named the same as the NetCDF variable names so
they can be accessed by name as shown below.